Работа конкурсной программы "Сетевая конференция проектных работ"

Тема проекта «Применение БПЛА (беспилотных летательных аппаратов)) в сельском
хозяйстве	

посредством воздушной фото- и видео- съёмки наземных объектов»

Автор: Морозов Владислав

муниципальное бюджетное общеобразовательное учреждение «Школа № 36 с углубленным изучением отдельных предметов» городского округа Самара

Научный руководитель:

Грицай Алексей Евгеньевич, заместитель директора (ИКТ)

г. Самара,

2018 г.

Оглавление

 Введение Глава 1. Выбор схемы аппарата. Глава 2. Подробный выбор компоновки схемы. 	
3. Глава 2. Подробный выбор компоновки схемы	
4. Глава 3. Проработка модели в программе XFLR5	
5. Глава 4. Изготовление.	
б. Глава 5. Затраченные ресурсы	
7. Заключение	
8. Список используемой литературы	19

1. Введение

Обоснование выбора темы: Данная тема выбрана автором в связи с его интересом к летательным аппаратам. После окончания школы автор планирует поступить в Самарский государственный аэрокосмический университет имени академика С.П. Королева.

Проблема: развитые сельские хозяйства России не имеют доступных экономичных вариантов воздушной проверки (визуального мониторинга или фото/видеосъёмки) необъятных, засеянных разными культурами, территорий, на предмет отсутствия мелких вредителей, контроля всходов,

проверки качества посевов и т. д.

Идея проекта: внедрение и применение экономичного варианта беспилотного летательного аппарата в аграрную отрасль страны, что приведет к увеличению её производительности.

Цели и задачи

Цель проекта: представить руководителям развитых сельскохозяйственных угодий летательный аппарат (спектр применения указан выше), а именно доказать его рентабельность (см. пункт маркетинговое исследование) и производительность.

- Задача 1. Придумать или выбрать схему летательного аппарата, способного вести аэрофотосъёмку на протяжении 60 минут со скоростью 50-60 км/ч.
- Задача 2. На практике, в домашних условиях создать бюджетный беспилотный летательный аппарат для аэрофотосъёмки наземных объектов.
- Задача 3. В ходе полевых испытаний определить пригодность аппарата для сельского хозяйства и последующего применения в других сферах.

1. Глава 1. Выбор схемы аппарата.

БПЛА или БЛА переводится как беспилотный летательный аппарат. Среди них различают три основных типа: аэростатические, аэродинамические и реактивные. Подробная информация изложена в таблице 1.

	Аэростатические		Реактивные		
		Гибкое крыло	Фиксированное крыло	Вращающееся крыло	
безмоторные	Аэростаты	Воздушные змеи и аналоги безмоторных	Планеры		
моторные	Дирижабли	Аналоги моторных аппаратов сверхлегкой авиации (парапланы, дельтапланы и др.)	БПЛА самолетного типа	БПЛА вертолетного типа	Космические реактивные аппараты

Таблица 1 - Типы БПЛА

Стимулом к развитию беспилотной авиации во всем мире послужило успешное и широкое использование БПЛА армиями США и Израиля в ходе военных операций (Персидский залив, Югославия, Ближний Восток, арабо-израильские войны). Также, об изначальной цели применения данной разработки можно догадаться по слову из его названия: беспилотный – без пилота на борту - т.е. БПЛА позволил свести на нет риск для жизни пилота, тем самым открывая широкий спектр использования на поле боя.

БПЛА зарекомендовали себя как эффективное средство разведки, сопровождения боя, в качестве ложных мишеней для обнаружения зенитных установок противника, доставки малогабаритных грузов и, к тому же, размеры аппарата существенно влияли на его уязвимость.

На данный момент такой аппарат применяется в различных сферах деятельности, такие как:

Картографирование - фотографирование местности с целью получения качественных снимков для создания карт; инфракрасная съёмка — для подсчета численности животных на определённой территории; участие в поисково-спасательных операциях посредством осмотра местности с высоты птичьего полёта; применение в сельском хозяйстве (см. в начале работы),

военная сфера (указано выше) и т.д.

Я решил построить беспилотный летательный аппарат, главное предназначение которого - аэрофотосъёмка, пользуясь расчетами программ, опираясь на справочную литературу и недавний опыт (рис.1, рис.2).

Рис. 1 (Вариант с шасси)

Рис. 2 (без шасси, покрашенный и доработанный)

На этом самолете отрабатывались навыки взлёта, полёта и посадки по камере. При постройке нового аппарата учитывались особенности предыдущей схемы, поведения в воздухе, управляемость и т.д., также, учитывался опыт изготовления предыдущего. Была выбрана схема без шасси в виду отсутствия подготовленных ВПП в сельской территории. Подразумевается взлет с руки (взлетный вес до 3 кг) и посадка на «брюхо». При размещении стабилизированного подвеса в носовой части фюзеляжа, происходит затенение крыла подвесом. По этому в итоге выбрали схему – парасоль (крыло расположено на пилоне над фюзеляжем). Так же двигатели на крыле приподняты над землей (гарантия от поломки винтов при посадке).

Выбор БПЛА самолетного типа объясняется простотой изготовления и экономичностью. К тому же, эта схема наиболее популярна. Приоритет данной конструкции над остальными можно проиллюстрировать диаграммой 1.

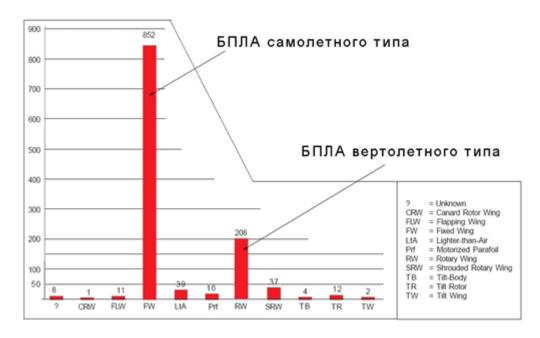


Диаграмма 1. Соотношение числа БПЛА самолетного и вертолетного типов ко всем прочим (по данным UVS International).

Российские авиамоделисты изготовляют радиоуправляемые модели самолётов в основном для хобби, к примеру - тренировки навыков взлёта и посадки. Для людей, увлекающихся этим делом существуют клубы, которые устраивают различные соревнования (Рис.3).

Рис. 3

2. Глава 2. Подробный выбор компоновки схемы.

Расположение двигателей. Для видеосъемки с воздуха (видео, фото), необходим аппарат, исключающий попадание в кадр винта и других конструкционных элементов. Данным требованием удовлетворяет двухмоторная компоновка с тянущими винтами и высоко расположенным над фюзеляжем крылом. Обдув крыла от двух двигателей создает дополнительную подъемную силу при взлете, что позволяет отказаться при взлете от катапульты и запускать аппарат с руки.

Оперение. Выбор V — образного хвостового оперения обусловлен простотой изготовления, эффективностью и возможностью съемного исполнения (крепление - болты) для транспортировки. Такое оперение не затеняется крылом во всех режимах полета. Данная схема оперения применяется на большинстве маломаневренных беспилотных аппаратах самолетного типа.

Расположение крыла. Крыло удобно расположить на пилоне – небольшом обтекаемом выступе на фюзеляже. Пилон способствует уменьшению сопротивления (влияние фюзеляжа на крыло) что приводит к улучшению аэродинамического качества, повышается продольная и поперечная устойчивость аппарата. Крыло разборное (крепление болты), что, также, упрощает транспортировку (Рис.4).

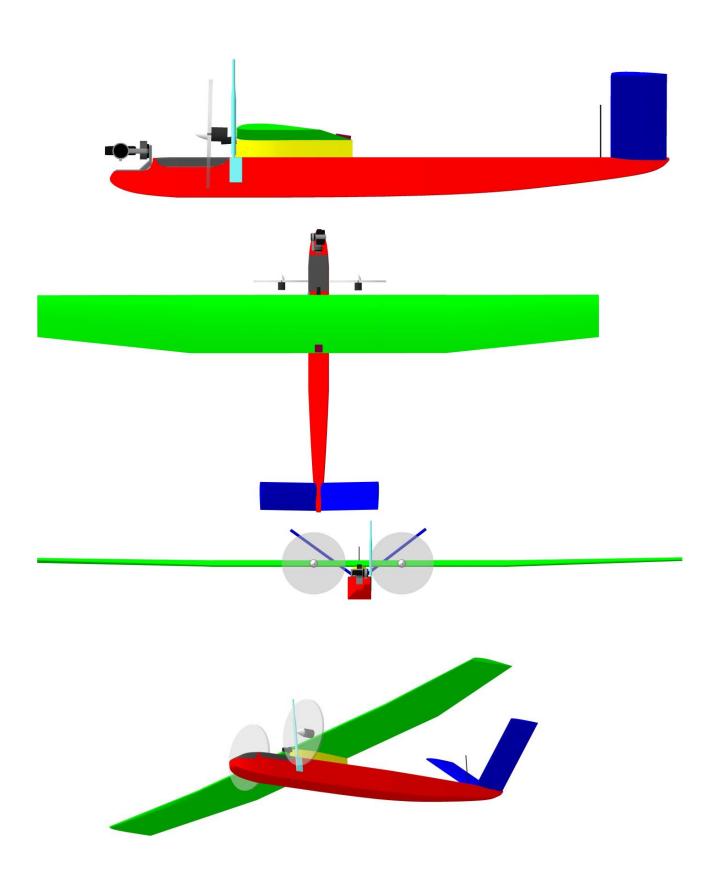


Рис. 4: общие виды самолета. (3D модель выполнена в программе KOMPAS-3D V-15.)

3. Глава 3. Проработка модели в программе XFLR5.

Аэродинамические характеристики самолета прорабатывались в программе XFLR5. Это виртуальная аэродинамическая труба. Был выбран профиль крыла AG41 (9% относительной толщины). Это планерный профиль крыла, разработанный Dr. Drela для малых чисел Re. В диапазоне скоростей 45-65 км/ч, при хорде крыла 230 мм, данный профиль имеет наилучшие характеристики (Рис.5).

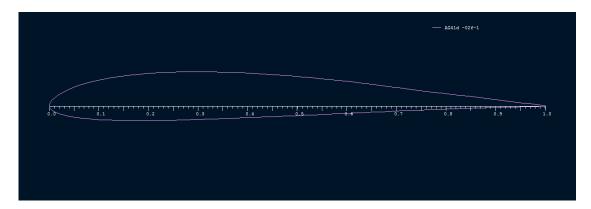


Рис. 5

В программе создаётся модель будущего самолета и «продувается» его для углов атаки от -3 до 20 и для чисел Re (Ренольдс) от 50 до 1.000.000 (Рис.6-8).

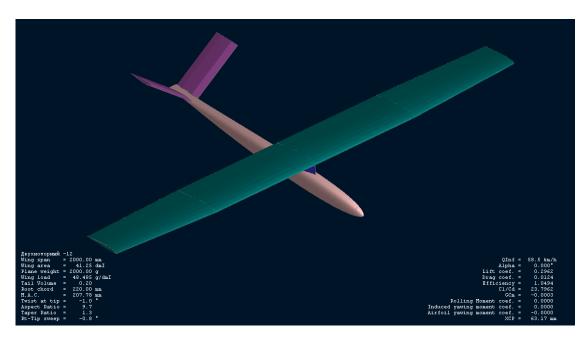


Рис. 6

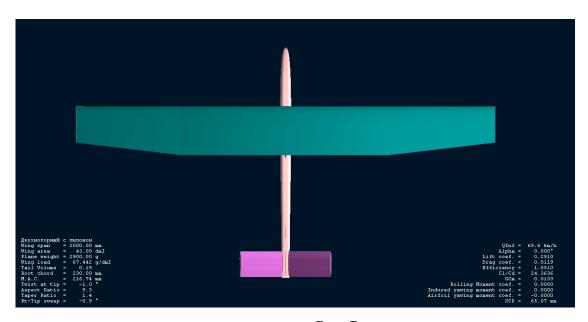


Рис. 7

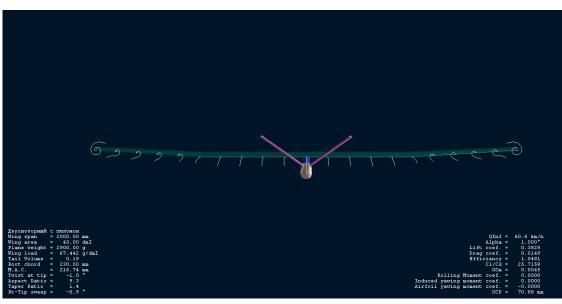
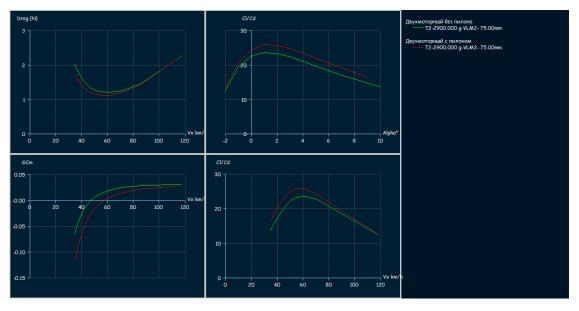



Рис. 8

Рис. 9

На верхнем левом графике (Рис.9) показана потребная тяга горизонтального полета для разных скоростей. Минимальная потребная тяга получается в диапазоне от 45-55 км/ч (при взлетном весе 2900 г). На нижнем левом графике (Рис.9) показан продольный момент (пикирование, кабрирование) от скорости полета. До скорости 55 км/ч виден явный пикирующий момент, выше 55 км/ч – кабрирующий (самолет задирает нос). Наглядно видно преимущество классической схемы самолета. Аппарат будет сам стабилизироваться при планировании. На верхнем правом графике (Рис.9) показана зависимость АК (аэродинамического качества - отношения подъемной силы к силе сопротивления) от угла атаки. На нижнем правом графике (Рис.9) показана зависимость АК от скорости планирования.

4. Глава 4. Изготовление.

Фюзеляж выполнен из пенополистерола, силовые шпангоуты вырезаны из фанеры и бальзы. Снаружи обклеен стеклотканью на эпоксидной смоле, а затем – слой автомобильной грунтовки (Рис. 10-11).

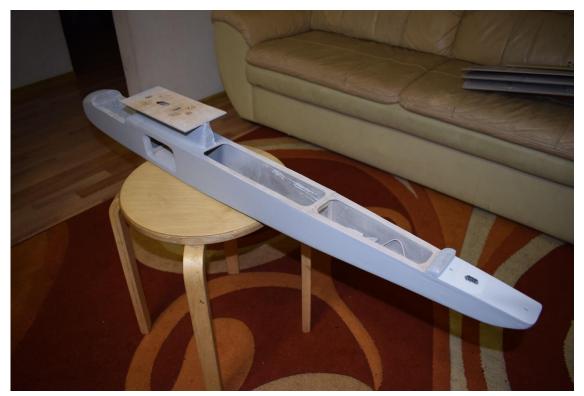


Рис. 10

Рис. 11

Оперение состоит из двух килей, расположенных под одинаковыми углами (Рис. 12).

Рис. 12

Крыло – тот же пенопласт, нервюры, лонжероны из линеек. Обклеивается бумагой с помощью аквалака. Оно выполнено разборным, части которого соединяется с помощью карбоновых трубок (Рис. 13).

5. Глава 5. Затраченные ресурсы.

Используемая аппаратура.

Внутренняя аппаратура (в самолёте):

- Батарея LIPO 10 Ач (амперчасов), 3S (три банки)
- Приемник (планируется установить систему дальней связи Expert Tiny 1 Вт, 433 МГц)
- Сервоприводы 9 гр х 4 шт.
- 2х Мотор 2830 1000 kV
- 2х Регулятор оборотов двигателя на 30А
- Винты 9х6 2 шт.
- Трех осевой стабилизированный подвес для камеры Mobius на безколекторных моторах (контроллер AlexMos)
 - Видеопередатчик на 1,2 МГц
- Автопилот. Планируется установить АП (автопилот) MegapirateX (полет по точкам, автоматический взлет и посадка, телеметрия, наземная станция, управление БАНО, автоматический возврат на базу при потере радиосигнала)
 - GLONAS/GPS приемник

Внешняя аппаратура (на земле):

- Видеоприемник на 1,2 МГц
- Патч-антена на 1,2 МГц, установленная на 3х-ногом штативе.
- Видеомонитор 19 дюймов
- Ретранслятор (2,4 ГГц на 443 МГц) дальнобойный модуль радиосвязи.
- Записывающее видео устройство.
- Электропитание на земле планируется организовать от бортовой сети автомобиля (12 В), либо от отдельной батареи (на выбор).
 - Пульт TYRNIGY

Затратами на материалы для изготовления каркаса, структуры аппарата можно пренебречь, т.к. они небольшие относительно затрат на аппаратуру, как внешнюю, так и внутреннюю, Приблизительный подсчёт выявил стоимость постройки всего аппарата, готового к применению – 15 000 р.

Проект нацелен на обращение внимания фермеров, руководителей сельскохозяйственных угодий, на его выбор в качестве массового применения. Подробная программа по внедрению,

технические решения и другие подробности будут изложены в презентации самого проекта (25 января $2017 \, \Gamma$.).

6. Заключение.

На момент написания данной работы самолёт находится в стадии завершения постройки (Рис. 14). Опираясь на успех полётов предыдущего беспилотного летательного аппарата, видео с его борта, а также фото и прочие материалы, есть основания утверждать, что этот аппарат полетит, и его характеристики будут гораздо лучше. К дате презентации проекта планируется окончательно доделать самолёт, сделать пробный вылет, фото- и видео-материалы которого так же будут представлены, тем самым определив его пригодность к дальнейшему использованию в сельскохозяйственной и других сферах деятельности.

Рис. 14

7. Список используемой литературы

- 1. Зинченко О.Н. «Беспилотный летательный аппарат: применение в целях аэрофотосъемки для картографирования». ЗАО «Ракурс», Москва, Россия, 2011. http://www.racurs.ru/www_download/articles/UAV_1.pdf
- 2. Сечин А.Ю., Дракин М.А., Киселева А.С. «Беспилотный летательный аппарат: применение в целях аэрофотосъемки для картографирования» (часть 2), ЗАО «Ракурс», Москва, Россия, 2011. http://www.racurs.ru/www_download/articles/UAV_2.pdf